

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Timing performance of thin Low-Gain Avalanche Detectors (LGADs)

Sofia Strazzi (University and INFN, Bologna)

LOW GAIN AVALANCHE DETECTORS

LGADs are silicon detectors developed to detect charged particles. \rightarrow They are an evolution of n-on-p (PIN) sensors, obtained by implanting an additional highly doped gain layer below the p-n junction.

MOTIVATIONS

Timing layers of future, more advanced high energy physics experiments require even better time resolutions (~20 ps). Looking at the simulations, a thinner LGAD design could match the requirements.

Many other applications:

Positron Emission Tomography (PET): better image quality and lower dose on patients

INTRODUCTION

X3

NAME OF ALL ARCH NUMBER

Particle counting and hydrotherapy: possibility to reach unprecedented rate capabilities ✤ 3D and robotic vision: excellent precision in the reconstruction (few mm spatial resolution)

TESTED SENSORS

First very thin LGAD prototypes produced by Fondazione Bruno Kessler (FBK, Italy)

Reference **50 µm** HPK LGAD

> > **Comparison** with the thinner design > Validation of setup and analysis technique

TESTED LGADS

Many useful quantities could be extracted from the curves:

Capacitance-Voltage characteristics

- ► Voltage in which the gain layer depletes (V_{GL}) ► Full sensor **depletion** voltage
- **Doping** profile and uniformity
- Electric field

Current-Voltage characteristics

Information on the voltage interval of operation ► breakdown voltage (V_{BD}) Evaluation of the layout of the sensors

A preliminary performance study was done through a laser setup.

PRELIMINARY RESULTS

CHARGE DIST

DATA ANALYSIS

The time resolution was evaluated by applying the **Constant Fraction Discrimination** (CFD) technique to minimize the time slewing effect.

TIME RESOLUTION

The time resolution for a fixed CFD (the one that minimizes the time resolution) is reported as a function of different quantities:

VOLTAGE 80 • 25 µm 70 • 35 µm • 50 µm 60 50 40 30 20

DRIFT ELECTRIC FIELD

CHARGE

RESULTS

Each distribution was fitted with an **asymmetric q-Gaussian** function.

The **sigma extracted** from the fit has then been used to obtain the **final** time resolution of the three sensors at a certain voltage and CFD.

